The composition of Cart3D output files

The Composition of Cart3D Output Files

default filename: <nesh. c3d>

Output files are written in C binary using the fwrite from <stdio.h>. Asthe “cubes’ mesh generator exe-
cutes, it writestwo separate temporary files“t enp. cel | 7 and“t enp. f ace” which are opened during
volume mesh generation, and appended during cut-cell mesh generation. At the end of execution, cubes

concatenates these two files together to make a single output file (default nameis nmesh. ¢3d). Thefirst
sketch shows the general structure of thisfile.

a. Header nvol Hexes
nCut Hexes
nSplitCells
nFl owFaces
Faces[X/ Y/ Z]
nCut Faces

C‘@//

b. Cdll Lists
volume Cedlls

cut-cells

c. Face Lists
o facelist of volume cells

[
N~ [

& facelist of cut-cells

page 1 8/26/02

The composition of Cart3D output files

a. Header
nVol Hexes

nCut Hexes
nSplitCells
nFl owFaces
Faces[X/ Y/ Z]
nCut Faces

a. Header information:

nVol Hexes:
nCut Hexes:
nSplitcCells:

nFl owFaces:

Faces[X/ Y/ Z] :

nCut Faces:

b. Cdl Lists:

Number of fully “FLOW” Cartesian hexahedra in the volume mesh (not counting
any “INTERSECTED” cells) (type“i nt ™)

Number of Cartesian hexahedra which actually intersect the solid wall boundaries.
(type“int™)

The number of polyhedra into which the “split-cells’ are cut. (see figure). (type
“int”)

The number of flow-through, non-intersected Cartesian faces connecting the
nVol Hexes FLOW hexes in the volume mesh. Note that only faces whose adja-
cent cells have status FLOW | FLOW are counted by nFl owFaces. (type“int”)
The number of non-intersected hex faces in each Cartesian direction in the face
list. Thelist of un-cut facesis sorted, so that retaining these three integers uniquely
identifies which faces are in which direction. (type “i nt)

The total number of flow-through faces associated with all the cut-cells. Thisisthe
number of face-polys of the cut-cells, and includes non-intersected faces whose
adjacent cells have status “INTERSECTED | FLOW”. (type“int”)

Two arrays of structures describe cell-based information. (1) The first describes the Cartesian cell infor-
mation only (location, name, size, etc.). It is organized with the list of nVol Hexes volume cells (type
“FLOW”) before the list of “INTERSECTED” hexes which cut the boundary. (2) The second array con-
tains additional information about the cut-cells. Since some of these may be split into many different con-
trol volumes (split-cells) there are a total of nCut Hexes + nSpl it Cel | s entries in this array. The
first nCutHexes entries correspond (1-to-1) with the last nCut Hexes of the Cartesian cell list. The
remainder of entries are split-Cells.

#define DIM 3 I* ...for 3 space dimensions */
* ---- declare low storage hexs ---- */
typedef struct TinyHexStructure ts_Ti nyHex;
typedef ts_TinyHex *p_tsTinyHex;
[* -- define tiny hex type flags - */
typedef enum {UNSET_HEX, FLOW HEX, CUT_HEX, SPLIT _HEX } tinyHexType;
struct TinyHexStructure { ~ define the complete structure */
| NT64 nane; /* -->name tells position in mesh */

page 2 8/26/02

char
byt e
b

The composition of Cart3D output files

Cell Lists (continued):

typedef d
typedef d

typedef s
typedef t

struct ts
i nt
dpoi nt
dpoi nt
doubl e
i nt

i nt
p_dpoi
doubl e

}s

for(j=0

ref[DM; I* -->Num. of cell divisionsin X,Y.Z */
hexType; I* --> (byte) cast of tinyHexType */
oubl e dpoint3[DI M ; I* -- define double 3D point */
poi nt 3 *p_dpoi nt 3;
I* ---- declare annotated cut-cell with full surf info ----*/
truct CutCell Struct ts_CutCell;
s _CutCell *p_tsCutCell;
_Cut Cel | { I* ...define the compl ete cut-cell structure */
nikntTri; * --> no. of tri’s connected to cell */
3 nor mal ; /* --> agglomerated surf norm vec. */
3 centroi d; I* --> volume centroid of cell */
vol une; * --> volume of cell */
splitlndex; /* --> gplitindex < 0: hex not split */
I* O<splitindex < nCutHexes: pt to splitParent */
* splitindex = nCutHexes: pt to first splitkid =~ */
p IntTrilist; / --> ptr tolist of indices of intersect triangles ~ */
nt 3 p_centroi ds; I* --> ptr to list of centroids of tPolys *|
*p_area; * --> ptr to list of areas of tPolys */
The“Cell Lists” are written to the file with 4 sequential writes.
1. Write the Cartesian hex info for the nVol Hexes un-cut (volume mesh) cells.
;] <nVol Hexes; | ++) {
: Cartesian Additional
b. Cell Lists Cells cut-Cell Info
|
list of volume cells |
[]
: type
, nVol Hexes ts_Ti nyHex
list of cut-cells !
. .
: |
[]
type |
ts_Cut Cel |
N
nCut Hexes [C
A o
nSplitCells
tPolylnfo
(includes oentr%i ds, areas, etc) \
defined by
cutCell Sructs
¥
page 3 8/26/02

The composition of Cart3D output files

fread(&p_Vol Hexes[j].name, sizeof(INT64), 1,p_InputMeshstrm;
fread(&p_Vol Hexes[j].ref[0], sizeof (char), DM p_Input Meshstrm;
}
2. Write the Cartesian hex info for the nCut Hexes cut (body intersecting) cells.
for(j=0;]j<nCut Hexes;j ++){
fread(&p_Cut Hexes[j].nanme, sizeof(INT64), 1,p_InputMeshstrm;
fread(&p_Cut Hexes[j].ref[0], sizeof(char), DM p_Input Meshstrm;

}
3. Beginfilling out the cut-cell information.
{

i nt j, total Tri = 0;
p_tsCutCell p_CutCells;
for(j=0;j<nCut Hexes+nSplitCells;j++){
fwite(&otal Tri, si zeof (i nt) , 1L, p_TrmpCel I Fil e);
fwite(&p_ CutOeIIs[J].nIntTri, si zeof (i nt) , 1, p_TmpCel I Fil e);
fwite(p_CutCells[j].normal, si zeof (dpoint3),1,p_TnmpCel | Fil e);
fwite(p_CutCells[j].centroid, sizeof(dpoint3),1,p TnpCellFile);
fwite(p_CutCells[j].volune, si zeof (double), 1,p_TmpCel | Fil e);
fuwrite(& _CutCells[]].splitlndex,sizeof(int) , 1, p_TmpCel I Fil e);
total Tri +=p_cCells[j].nIntTri;
} }
4. Write the triangle/tPoly info for each cut-Cell.
t
int i,j;
p_tsCutCell p_CutCells;
for(j=0;]j<nCut Hexes+nSplit Cel | s j ++) {
for(i=0;i<p_CutCells[j].nIntTri;i++){ * <-- No. of trislinked to cell */
fwite(& CutCells[j].p_ IntTrlLlst[l] si zeof (i nt) , 1, p_TmpCel I Fil e);
fwite(p_CutCells[j].p_centroids[i], sizeof(dpoint3),1, p_TmpCellFile);
fwite(& _CutCells[j].p_areali] , Sizeof (double) ,1,p_TnpCellFile);
}
}

page 4 8/26/02

The composition of Cart3D output files

c. Face Lists
facelist of volume cells

facelist of cut-cells

c. FacelLists

Cell-to-cell mesh connectivity is stored through face-lists. For compactness, these come in two special-
ized datatypes, (1) Cartesian face lists - thisisaminimal face structure, and is used only for non-inter-
sected mesh faces, (FLOW | FLOW). It has only two entries - the indices of the un-cut Cartesian cells on
either side. Thislist issorted so that thefirst Faces[X] faces have normal vectorsin the x direction, and
these are followed by they and z faces. (2) The second datatype is a more general Cartesian face struc-
ture which includes the face area, centroid, etc.. for cut cells. Indexing into the cell lists assumes a contig-
uous, sequential cell numbering, starting with the un-cut volume cells, through the split cells. Obviously,
thefirst nVol Hexes indicesrefer to volume cells, and higher indices refer to cut or split cells. Faces at
topological mesh boundaries (far-field, symm etc..) have cells on only one side, degenerate cases are
denoted witha NO CELL_FLAG | NDX = -1.

typedef tsVface *p_tsVface;

struct Vol umeFaceStructure {

I* ---- declare low storage Cart Face ---- */
typedef struct Vol umeFaceStructure tsVface;

/*

...define the compl ete structure */

i nt adj Cel I [2] ; I* --> 0 = Index of cell onlow side */
}; * 1= Index of cell on high side*/
typedef struct CutFaceStructure tsCface; /* ---- declare Cut Cart Face (lots of info) ----*/
typedef tsCface *p_tsCface
struct CutFaceStructure { [* ...define the compl ete structure */

int adj Cel | [2]; I* --> 0= low, 1= high */

dpoi nt 3 centroid; * --> area centroid of face */

doubl e ar ea, [* --> area of face */

char dir; I* ->0=X1=Y,2=Z */
Both of these lists are written with a single write statement.

p_tsVface p_Faces;

p_tsCface p_cFaces;

[* ...1. Write out Cartesian faces for volume mesh (uncut faces) */
fwite(p_Faces, sizeof(tsVface), nFl owraces, p_TnpFaceFile);
[* ...2. Write out Cartesian face information for cut Cells */
for(j=0;]j<nCutFaces;j++){ /* (just like we wrote ‘em) */
fwite(p_cFaces[j].adjCell, sizeof(int), 2, p_InputMeshstrn;
fwite(p_cFaces[j].centroid,sizeof(dpoint3), 1, p_IlnputMeshstrm;
fwite(&p cFaces[]].area , si zeof (double), 1, p_InputMeshstrm;
fwite(&_cFaces[j].dir , Si zeof (char), 1, p_InputMeshstrm;
page 5

8/26/02

